
Hybrid CPU Scheduling Algorithm
Anil Kumar Gupta

Department of Computer Science &Engineering
Galgotia’s College of Engineering and Technology Greater Noida U.P. (India)

Abstract— The purpose of multiprogramming is to maximize
the CPU utilization through some process running at all times
in the CPU. A process change its state during the time of its
execution that may be in one of the following states queue
(new, ready, waiting, running, terminated) in the operating
system. The procedure of selecting processes among these state
queues is carried out by a scheduler. Scheduling of CPU is one
of the critical factors that affect the efficiency and the
efficiency of the system is maximized when we allocate
processes to processor in a precise manner in process
scheduling. The goal of CPU scheduler is to allocate processes
to be executed by the processor. In this paper we proposed a
new simple algorithm that is both pre-emptive and non-
preemptive in nature to find a solution for CPU Scheduling.
This algorithm is based on the NOVEL Algorithm [1]. Our
aim is to enhance the novel algorithm and minimize average
waiting time & average turnaround time for the given number
of processes and result of this algorithm is then compared with
the FCFS, SJF, SRJF, RR, Priority scheduling algorithms that
are already discussed [1].

Keywords— Scheduler, State Diagrams, CPU-Scheduling,
Performance.

I. INTRODUCTION
In a single-processor system, only one process can

run at a time; any others must wait until the CPU is free.
The aim of multiprogramming is to have some process
running at all times, to maximize CPU utilization [2].
Scheduling is a fundamental operating-system function.
Approximately all computer resources are scheduled before
use. The CPU is, of course, one of the most important
computer resources. Thus, its scheduling is essential to
operating system design. CPU scheduling determines which
processes run when there are multiple run-able processes.
CPU scheduling is important because it can have a big
effect on resource utilization and the overall performance of
the system [3].

Generally, there are three types of schedulers,
which may co-exist in a complex operating system:

 Long Term Scheduler
 Medium term scheduler
 Short term scheduler.

Figure-1: Process Life Cycle

A. LONG TERM SCHEDULER
Long term scheduling is performed when a new

process is created. It is shown in the figure above. It decides
which processes are to be admitted from NEW state queue
to READY state queue and control the number of processes
in the READY state queue because if the number of ready
processes are high in the ready queue then it goes overhead
in the operating system (i.e., processor) for maintaining
long lists, context switching and dispatching increases[4].
So it allows only limited number of processes into the ready
queue.
B. MEDIUM TERM SCHEDULER

Medium-term scheduling is an element of the
swapping function. When the main memory gets freed, the
OS looks at the list of suspend ready processes, decides
which one is to be swapped in (depending on priority,
memory and other resources required, etc)[4]. It will do the
swapping-in function among the swapped-out processes.
C. SHORT TERM SCHEDULER
Short-term scheduler is also known as CPU scheduler.
Short-term scheduler is invoked whenever an event raised,
that may lead to the interruption of the current running
process [4]. It selects one process from among the processes
that are ready to execute in ready state and allocates the
CPU.

The rest of the paper maintains as follows:
Section-2 Presents CPU scheduling objectives and
performance criteria. Section 3 Introduces existing
scheduling algorithms. Section-4 Explains the proposed
Algorithm. Section-5 Result Section-6 will provide
conclusion and future work.

II. OBJECTIVE AND PERFORMANCE CRITERIA

A. OBJECTIVES OF SCHEDULING
There are many objectives that must be considered

in the design of scheduling discipline such as:
 Fairness: Avoid the process from starvation. All

the processes must be given equal chance to
execute [5].

 Throughput: Throughput is the rate at which
processes are completed per unit of time.

 Predictable: A given job should run in about the
same amount of time and at the same cost
irrespective of the load on the system.

 Overhead: A certain portion of system resources
invested as overhead can greatly Improve overall
performance of the system.

 Resources: Scheduling mechanism [6] should
keep the resources of the system busy.

Anil Kumar Gupta / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1569-1572

www.ijcsit.com 1569

 Indefinite postponement: Avoiding indefinite
postponement of any process so that each process
is executed in a certain amount of the time.

 Priority: Give preferential dealing to processes
with higher priorities [5].

B. SCHEDULING PERFORMANCE CRITERIA
 Scheduling criteria is also called as scheduling
methodology. In multiprogramming system different CPU
scheduling algorithms have different properties. The criteria
used for comparing these algorithms include the following:

 CPU Utilization: Keep the CPU as busy as
possible. It ranges from 0 to 100%. In practice, it
ranges from 40 to 90%.

 Throughput: Throughput is the rate at which
processes are completed per unit of time.

 Turnaround time (TAT): This is the how long a
process takes to execute a process. It is calculated
as the interval between the submission of a process
and its completion.

 Waiting time (AT): Waiting time is the sum of the
time periods spent in waiting in the ready queue.

 Response time (RT): Response time is the time it
takes to start responding from submission time.

III. EXISTING ALGORITHM &LITERATURE REVIEW

A. TYPES OF SCHEDULING
i. Non-Preemptive scheduling is also known as

“voluntary” or “co-operative” scheduling. In this case
the scheduler is unable to forcibly removing processes
from a CPU.

ii. Preemptive Scheduling is able to forcibly removing
processes from a CPU when it decides to allocate that
another process.

B. SCHEDULING ALGORITHM
i. First-Come-First-Served (FCFS) is the simplest

scheduling algorithm. It simply placed the processes in
running state, in the order that they arrive in the ready
queue [1, 5].

ii. Shortest Job First (SJF) is the strategy of arranging
processes with the least estimated processing time
remaining to be next in the queue. It works under the
two schemes (preemptive and non-preemptive). It’s
optimal since it minimizes the average turnaround time
and the average waiting time. The main problem with
this algorithm is the necessity of the previous knowledge
about the time required for a process to complete. Also,
it is not free from starvation issue especially in a busy
system with many small processes being run [2, 7].

iii. Round Robin (RR) which is the main concern of this
research is one of the oldest, easiest and fairest and most
widely used scheduling algorithms, designed mainly for
time-sharing systems. RR is similar to FCFS except that
preemption is added to processes [2, 7].

 iv. Multi-Level Feedback Queue (MLFQ) This algorithm is
very popular in interactive systems. It resolves both
efficiency and response time problems. It is also known
as an “adaptive” algorithm, in that processes are always
adapting to their previous execution history. This policy
is mainly used if the remaining time of a process cannot

be calculated for some reason, and thus turning its
attention to the time spent executing. It’s essential
operation follows:
 A single queue is maintained for each priority

level [8].
 A new process is added at the end of the highest

priority level [8].
 It is allotted a single time quantum when it reaches

the front [8].
 If the process uses up the time slice without

blocking, then decrease its priority by one, and
double its time slice for its next CPU burst

V. Highest Response Ratio Next (HRRN) This algorithm
implements the “aging priority” scheme, in that as a
process waits, its priority is increased until it finally
gets to run. The priority is calculated as follows:

 Priority = (w + s) / s
 Where:
 w = time spent waiting for the processor
 s = expected service time
 This policy is quite helpful in that long processes will

age, and thus will eventually be assigned a higher-
priority than the shorter jobs (which already have a
high-priority because of the small denominator value).

C. RELATED WORK
 The closest work in this area is A novel algorithm
[1] who gave the nature of the algorithm both preemptive
and non preemptive based on the arrival time. But the
nature of the proposed algorithm is based on the burst time
and later, we show that proposed algorithm gives better
average waiting time and average turnaround time through
example which is already discussed in novel algorithm and
compare with other algorithm. To our knowledge, no earlier
works have demonstrated like this however; this is what we
show here.

IV. PROPOSED WORK: HYBRID CPU SCHEDULING

ALGORITHM
 The proposed algorithm Hybrid CPU Scheduling
Algorithm is both preemptive and non-preemptive in nature.
In this algorithm we find a factor known as Total Elapsed
Time (TET) is calculated by the summation of burst time
(B.T.) and arrival time(A.T.) i.e., TET = B.T. + A.T.. TET is
assigned to each process and on the basis of TET process
are sort in ascending order. Process having shortest TET is
executed first and process with next shortest TET value is
executed next. By considering the Burst Time (B.T.) the
new algorithms acts as preemptive or non-preemptive.
Proposed CPU scheduling algorithm decreases turnaround
time, waiting time & response time and also increases CPU
utilization and throughput. The working procedure of
Hybrid CPU Scheduling of Non-Preemptive and
Preemptive algorithm is as given below:

 Obtain the list of processes, their arrival time
(A.T.) and burst time (B.T.).

 Find the Total Elapsed Time (TET) by summation
of arrival time and burst time of processes.

Anil Kumar Gupta / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1569-1572

www.ijcsit.com 1570

 Arrange the processes in ascending order based on
TET.

 Take the processes for execution as follows
Initially we assume that CPU arrival time is having some
value (ZERO).

1. Pick lowest TET.
2. Compare Process arrival time with CPU arrival

time is either equal or less.
3. If step 2 is not satisfied then, take next lowest TET

and repeat step 2 until burst time of all processes
become zero.

4. If Total Elapsed Time (TET) of any two processes
is equal and satisfied step 2 then execute process
based on lowest process ID.

A. CALCULATION
 (i) Turnaround Time (TAT) is difference of Completion

Time (C.T.) and Arrival Time (A.T.)
(ii) Waiting Time (W.T.) is difference of Turnaround Time

(T.A.T.) and Burst Time (B.T.)
(iii) Average waiting time is calculated by dividing total

waiting time with total number of processes.
(iv) Average turnaround time is calculated by dividing total

turnaround time by total number of processes.

i. Calculation of T.A.T. And W.T.

These examples have been taken from the Novel
Algorithm [1] to show that proposed algorithm give better
performance compare to Novel Algorithm.
EXAMPLE-1

Process ID Arrival Time Burst Time
0 04 02
1 01 04
2 02 06
3 03 01

Solution:
Step-1 Calculation of Total Elapsed Time (TET) =AT+BT

Process
ID

AT BT Total Elapsed
Time(TET)

0 04 02 6
1 01 04 5
2 02 06 8
3 03 01 4

Step-2 Sort the processes based on TET
Process ID AT BT TET

3 03 01 4
1 01 04 5
0 04 02 6
2 02 06 8

Step-3 Calculation of Completion Time (CT), Turnaround
Time (TAT) and Waiting Time (WT).

Process
ID

AT BT TET CT TAT WT

3 03 01 4 6 3 2
1 01 04 5 5 4 0
0 04 02 6 8 4 2
2 02 06 8 14 12 6

Total 23 10

Gantt chart:
Ideal P1 P3 P0 P2

 0 1 5 6 8 14

Avg. Turnaround Time=Total TAT/Total no of process =
23/4
 = 5.75
Avg. Waiting Time=Total WT/Total no of process = 10/4
 = 2.5
EXAMPLE-2

Process
ID

Arrival Time Burst Time

0 01 04
1 02 06
2 03 10
3 04 05
4 05 20
5 06 01

Solution:
Step-1 Calculation of Total Elapsed Time (TET) =AT+BT

Process
ID

AT BT Total Elapsed
Time(TET)

0 01 04 5
1 02 06 8
2 03 10 13
3 04 05 9
4 05 20 25
5 06 01 7

Step-2 Sort the processes based on TET
Process ID AT BT TET

0 01 04 5
5 06 01 7
1 02 06 8
3 04 05 9
2 03 10 13
4 05 20 25

Step-3 Calculation of Completion Time (CT), Turnaround
Time (TAT) and Waiting Time(WT).

Process
ID

AT BT TET CT TAT WT

0 01 04 5 5 4 0
5 06 01 7 12 6 5
1 02 06 8 11 9 3
3 04 05 9 17 13 8
2 03 10 13 27 24 14
4 05 20 25 47 42 22

Total 98 52

Gantt chart:
Ideal P0 P1 P5 P3 P2 P4
 0 1 5 11 12 17 27 47

Avg. Turnaround Time=Total TAT/Total no of process
 = 98/6
=16.33
Avg. Waiting Time=Total WT/Total no of process = 52/6
 = 8.66

Anil Kumar Gupta / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1569-1572

www.ijcsit.com 1571

V. RESULTS

1)

2) From above Example 1 and 2 it shows that our proposed

algorithm give less average turnaround time and average
waiting time compare to NOVEL Algorithm as well as
other scheduling algorithm which are discussed in [1].

3) It is act as SJF when arrival time of all processes is same.
4) It is act as priority scheduling when TET is consider as

priority.
5) This algorithm inherits the nature of both SJF and

Priority algorithm therefore it will call Hybrid
Algorithm.

VI. CONCLUSION & FUTURE WORK

In this paper we present a new CPU scheduling algorithm
called Hybrid CPU Scheduling Algorithm. Paper does not
contains any simulation but it based on novel algorithm[1]
and example are taken from there to avoid unnecessary
work only here we compare the Propose algorithm result
against Novel algorithm result to validation of it. From the
above results, it is clear that proposed algorithm is more
efficient than Novel, FCFS, Pre-emptive Priority and Non
Pre-emptive Priority, Round Robin. In Future we can come
with new CPU scheduling algorithm that will more efficient
to compare to other existing algorithm.

REFERENCES
[1] International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.2, Issue.6, Nov-Dec. 2012 pp-4484-4490 ISSN:
2249-6645

[2] Silberschatz, A. P.B. Galvin and G. Gagne (2012), Operating System
Concepts, 8th edition, Wiley India.

[3] Sabrian, F., C.D. Nguyen, S. Jha, D. Platt and F. Safaei, (2005).
Processing resource scheduling in programmable networks.
Computer communication, 28:676-687.

[4] www.go4expert.com › Articles › Operating System.
[5] A. Dhore “Opeating Systems”, Technical Publications.
[6] www.sciencehq.com/computing- technology /1308.html.
[7] Lingyun Yang, Jennifer M. Schopf and Ian Foster, “Conservative

Scheduling: Using predictive variance to improve scheduling
decisions in Dynamic Environments”, Super Computing 2003,
November 15-21, Phoenix, AZ, USA.

[8] www.site.uottawa.ca/~rabielmo/scheduling/elg6171_FinalReport.pdf

Anil Kumar Gupta / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1569-1572

www.ijcsit.com 1572

